2003 DOE Hydrogen and Fuel Cells Merit Review Meeting, May 19-22, 2003

Title of Project: Development of High-Performance, Low-Pt Cathodes Containing New Catalysts and Layer Structure

Contractor: Superior MicroPowders, LLC

Duration: 4 years, September 2001- September 2005

Award: March 28th, 2002; DE-FC0402AL67620, Topic 1A1

DOE Program Manager: Valri Lightner

Subcontractors: DuPont Fuel Cells, CFDRC

Stack Testing: GM

Principal Investigator: Paolina Atanassova, Ph.D.

phone: (505) 342-1492, ext. 52

e-mail: paolina@smp1.com

SUPERIOR MicroPowders

Approach - Technical Concept

Effort 1

Discovery of new, low Pt catalyst compositions and particle microstructures

Effort 2

Modeling and deposition of engineered cathode layers

High Performance Low-Cost MEA

- Effort 1:
 - » SMP
 - » DuPont Fuel Cells
- Effort 2:
 - » SMP
 - » CFDRC
- Short Stack Testing:

 $\gg GM$

SUPERIOR MicroPowders

Project Timeline and Milestones

Relevance and Objectives

- Technical targets
- Technical Task 14:

MEA Materials, Components, Processes

 Relevance to DOE Freedom CAR barriers and technical targets:

Component technical barriers:

- » Barrier O. Stack Material and Manufacturing Costs: low-cost, high-performance alternative oxygen reduction electrocatalysts
- » Barrier Q. Electrode Performance: cathode voltage losses and higher power densities at higher voltages
- » Barrier P. Durability: catalyst agglomeration and stability

Technology Platform: SMP's Spray Based Manufacturing

Project Performance Targets

- Single MEA 50 cm² test cell, Nafion 112
- Cell temperature 80C
- Anode/cathode constant flow rates = 510/2060 mL/min H₂/air (1.5H₂/ 2.5 air stoich at 1 A/cm²)
- 30 psig pressure on both anode and cathode
- 100%
 humidification
 of gases, 80 C
 dew points

• Galvanostatic,

Summary of Achievements Effort 1 Combinatorial Approach

Milestone	Description	Achievement	Timing	Status
1		Ability of spray approach to generate complex alloy catalysts with improved performance	2002	Up to 40 % improvement in terms of lower gPt/kW for Pt _x Ni _y Co _z ternary alloy system
2	approach optimization and	Correlation between ranking of catalysts and MEA performance and go-no-go decision criteria established	2002	Rapid screening used exclusively for initial screening of new catalysts

Summary of Achievements Effort 1 Milestone 2

Correlation of Half Cell Screening
Data and MEA Performance

Summary of Achievements Effort 1 Combinatorial Approach

Milestone	Description	Achievement	Timing	Status
3	Scale up of best performing catalysts	High surface area Pt/carbon and Pt ternary alloy/carbon catalysts scaled up	January 2003	Performance of scaled up materials at least equal to small scale ones
4	Complete assembly of Combinatorial Powder Synthesis System (CPSS) and optimize parameters	System fully integrated and automated, target production rates achieved, Pt/C catalysts benchmarked	March 2003	100 samples per week at 0.25 g achievable, start to investigate broad number of alloy compositions and microstructures
5	Complete assembly of rapid ink formulation equipment at DuPont	· ·	May 2003	75-150 samples per week testing rate achievable

Milestone 4: From Design to Functional Equipment

Summary of Achievements Effort 1 Milestone 5: High Throughput Screening

Characterization of Pt-alloy Electrocatalysts

 Degree of alloying dependant on spray processing parameter s and postprocessing conditions

20 wt.% Pt_xNi_yCo_z/C

Characterization of Pt-alloy Electrocatalysts

Single MEA Performance Data 80 C, 1.5H₂/2.5air at 1A/cm², 100% RH, 30 psig, 15 min/point

Summary of Achievements Effort 2 MEA Structure Optimization

Significant Interactions

• Los Alamos National Laboratory

- » Knowledge/experience transfer for alloy ORR catalysts
- » Pt alloys characterization by XRD (Fernando Garzon)
- » Validation testing (Francisco Uribe)
- General Motors, Fuel Cell Activities
 - » Testing criteria (Hubert Gasteiger)
 - » Validation testing (Susan Yan)
- Other Fuel Cell Developers

Summary of Achievements Combined Effort 1 and Effort 2

- •Effort 1:Ternary alloy catalyst performance improved from 2.6 gPt/kW to <1.5 gPt/kW
- •Effort 2: MEA structure development yields improvement from 2.2 gPt/kW to <1.5 gPt/kW
- •Combined best alloy catalyst and best MEA structure result in performance of the perform

Status vs. Project Performance Targets

- Currently in a single MEA 50 cm² test cell, Nafion 112
- Testing at fixed lower stoich conditions
- Need to validate results in stack
- Need to address long term stability
- Further improvements can be derived also from a thinner SUPERIOR MicroPowders

Plans and Future Milestones

Acknowledgements

- DOE OTT, Award DE-FC0402AL67620, Topic 1A1
- JoAnn Milliken, Valri Lightner
- SMP, DuPont Fuel Cells and CFDRC for cost share funding
- The whole SMP team and especially:

 Mark Hampden-Smith, David Dericotte, Paul Napolitano,
 Bogdan Gurau, Rimple Bhatia, Jim Brewster, Jenny Plakio,
 Heath Quiggle, Tomas Wood, Bryan Apodaca, Henry
 Romero
- DuPont Fuel Cells: JoAnn Schwartz, Lin Wang, Keith Tomey, John Gantzhorn, Richard Okine
- CFDRC: Sandip Mazumder, Sam Lowry

